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Preface  

I wrote this paper in graduate school, but it remains highly relevant to User Experience, 
Customer Experience, and Human Factors research today, as it allows for the comparison of 
categorical and continuous data in the same variance space, thus bridging the gap between 
“quant” and “qual” data, all for the end goal of better understanding our customers.  

A word to the wise (that most other users of such methodologies frequently forget to mention): 
transposing categorical data into continuous dataspace, by definition, includes a degree of 
subjectivity. This is allowed only under the assumption that the analyst is binning their data 
appropriately and in good faith.  

The rationale and code for this study could easily be applied in business situations such as:  

● Identifying relationships between user rating data (e.g., Likert scale data treated as 
categorical data) and reaction time (e.g. milliseconds until clicking on the intended 
target)  

● Operations in physical space and number of attempts to complete a task successfully 
(e.g., a forklift operator must shift their eye gaze X degrees from a primary focal point to 
a secondary focal point in order to see a target and successfully maneuver their 
machinery to pick it up. Success in this case would be measured by number of attempts 
before picking up the object 
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Introduction 
 Cannabis is the most frequently abused illicit drug in the United States ((NIDA), 2013) 
and approximately 9% of individuals who try cannabis will become dependent on it (Budney, 
Roffman, Stephens, & Walker, 2007).  

Anxiety and depression, as disorders of interoception, exteroception, emotion regulation, 
and mood homeostasis, are highly comorbid (Morilak & Frazer, 2004). Because of their common 
etiology, symptoms, and molecular signaling pathways, I have chosen to combine them under 
the term “negative affect” to better account for dysregulation of limbic systems, whether 
manifested as hyper- or hypo- functioning.  

Affective disorders are especially common among drug users, which is likely due to their 
common neurocircuitry. Approximately 20% of individuals who have an affective disorders are 
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also drug dependent, and about 30% of drug dependent individuals are also afflicted with an 
affective disorder (Conway, Compton, Stinson, & Grant, 2006). This is not surprising, as 
systems involved in emotional regulation and reward processing are implicated in affective 
disorders, targeted by drugs, and notably disrupted in the case of drug dependence (Akirav & 
Fattore, 2011; Hovens et al., 2012). 

 

Cannabinoid Signaling and the Limbic Hypothalamic Pituitary Adrenal Axis: The Limbic1 
Hypothalamic Pituitary (LHPA) Axis is a complex neuroendocrine network that controls 
individuals’ emotional and stress responses to stimuli. Although endogenous cannabinoids are 
ubiquitous and diverse in their signaling roles, substantial evidence supports a specific 
regulatory role of the HPA axis (Tasker, 2004). Cannabinoids modulate glutamatergic input to 
the hypothalamic paraventricular nucleus (PVN), thereby regulating secretion of hormones 
including corticotropin releasing hormone (CRH) (Di, Malcher-Lopes, Halmos, & Tasker, 2003). 
Studies of LHPA reactivity in individuals with major depression have shown that abnormalities 
are present even before symptoms of depression appear. This suggests that the issue begins 
with the HPA axis itself; that there may be inherent abnormalities potentially attributed to genetic 
variation (Holsboer, 2000). Thus, it is likely that individuals who have greater overall negative 
affect would try to mitigate their stress by regulating their own HPA axes via exogenous 
cannabinoids.   

Negative Affect and Cannabis Use 
 The comorbidity between negative affect and cannabis use has been extensively 

documented in other studies, specifically the role of negative affect in promoting cannabis use, 
as a means of self-medication (Bonn-Miller, Vujanovic, Boden, & Gross, 2011; Chabrol, 2005; 
Conway et al., 2006). For example, Bonn-Miller et al (2011) found a mediation effect of emotion 
regulation on the relationship between post-traumatic stress disorder and coping-oriented 
cannabis use (Bonn-Miller et al., 2011). Johnson et al. similarly found that coping motives for MJ 
use mediated the relationship between anxious arousal and frequency of MJ use (Johnson, 
Bonn-Miller, Leyro, & Zvolensky, 2009). In all, these findings support the inference of cannabis 
use as a coping mechanism for negative affect.  

My previous work has focused specifically on problematic cannabis use in this context, 
which indicates the presence of a cannabis use disorder (Gerstein & Lewin, 1990). Substantial 
evidence supports the fact that stress and trauma during developmental stages have long-term 
implications on emotional processing (C. Heim & Binder, 2012). This study specifically examined 
two components of stress: early life stress  (McFarlane et al., 2005), and perceived stress 
(Cohen, Kamarck, & Mermelstein, 1983). For simplicity of discussion, this project refers to these 
together (as the demonstrate the same trends in our sample) as “stress”. In this analysis, I 
identified a mediation effect of negative affect on the relationship between stress and 
problematic cannabis use (Ketcherside, 2013). However, some individuals may be more prone 
than others, due to genetic predisposition. This genetic component of negative affect and heavy 
cannabis use remains to be identified, thereby prompting the analysis discussed here.    

 

1  Because the Bed Nucleus of the Stria Terminalis (BNST) is a substantial output pathway of the 
amygdala and has been shown to regulate the Hypothalamic-Pituitary-Adrenal Axis, thus 
supporting the integration of a limbic component in this signaling pathway (Choi et al., 2007). 
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Genetic Factors  
Genetic variation leads to variations in molecular mechanisms; the production of proteins 

that dictate how well cells and systems do their jobs.  Single Nucleotide Polymorphisms (SNPs) 
account for a substantial amount of the variation between individual human genomes. With 
advances in genotyping technology, it has become easy and cost effective to identify alleles for 
SNPs in individuals. In this study, eight SNPs were chosen a priori based on their prevalence 
and proposed functional roles in the literature.  

Cannabinoid genes: Variations in the cannabinoid receptor 1 (CNR1) gene have been 
associated with increased predisposition to cannabis dependence (Akirav & Fattore, 2011; 
Filbey, Schacht, Myers, Chavez, & Hutchison, 2010). Understandably so, because CB1 
expressing neurons promote dopaminergic release in the nucleus accumbens, when activated 
(Filbey et al., 2010; Schacht, Hutchison, & Filbey, 2012). This is particularly relevant in instances 
of negative affect, as CB1-expressing neurons in limbic regions have been shown to modulate 
emotional processing, in conjunction with dopamine D1 receptors  (Akirav & Fattore, 2011; 
Terzian, Drago, Wotjak, & Micale, 2011). Variation in the CNR1 SNP rs1049353 has specifically 
been associated with resistance to depression treatments (Domschke et al., 2008). In a 
previous study involving this same sample, our group found that variation in this SNP accounted 
for a substantial amount of variance in hippocampal and amygdalar volumes, in conjunction with 
a tendency toward cannabis dependence (Schacht et al., 2012). Two other SNPs in CNR1, 
rs6454674 and rs806368, have similarly been associated with substance use dependence 
including alcohol, cannabis, and cocaine (Hopfer et al., 2006; Schacht et al., 2012; Zuo, 
Kranzler, Luo, Covault, & Gelernter, 2007).  

Serotonin: Serotonergic circuitry is best known for its role in feelings of well-being. Serotonin 
levels are often compromised in individuals with negative affect, accounting for the great 
success of medications targeting synaptic serotonin in the brain (Baldwin & Rudge, 1995). The 
serotonin transporter is particularly implicated in mood and stress response regulation, and is a 
hallmark target for treatment of emotional regulation disorders (Ketcherside, 2013). As a result, 
its encoding gene solute carrier 4 A6 (SLC4A6) has been examined for polymorphisms 
associated with pathology. The SLC4A6 SNP rs2066713 was specifically chosen for this 
analysis, because is a fragment length polymorphism in the serotonin transporter gene (Dong, 
2009). In addition, rs6311 is included because it is in the promoter region for the Serotonin 
Receptor 2A (HT2RA) gene. The minor allele at this locus decreases usage of an upstream 
transcription start site , encoding a longer 5’UTR with greater translation efficiency (Smith RM, 
2013). The serotonin receptor 2A (HT2RA) is an excitatory receptor specifically associated with 
anxiety. Some studies have indicated that rs6311 is implicated in major depressive disorder 
(MDD), but the results remain inconclusive (Kishi et al., 2010).   

LHPA Axis: An inability to cope with stress is an integral component of addiction development 
(Renoir, Pang, & Lanfumey, 2012). Because of this, I examined risk alleles in the LHPA axis. 
Adrenergic receptor beta(2) (ADRB2) became especially relevant, as implicated in psychological 
(and physiological) responses to environmental stress. It is a principal binding site for 
epinephrine, and is thereby a worthy candidate for examination of HPA axis dysregulation. For 
this analysis, I examined rs1042713, also known as Arg16Gly. It is a non-synonymous 
polymorphism, which results in agonist-induced internalization of the ADRB2 receptor 
(Diatchenko et al., 2006).    
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Dopamine: Dopaminergic circuitry is known for its role in reward. Specifically dopaminergic 
neurons in the ventral tegmental area and nucleus accumbens have been identified as 
recognizing and pursuing rewarding stimuli. These same neurons are also associated with 
avoiding negative stimuli (Budney et al., 2007; Koob & Le Moal, 2008) and may therefore play a 
role in a genetic predisposition toward negative affect that would be mitigated by cannabis use. 

Catechol-O-methl transferase (COMT) is the most well-known enzyme that degrades 
dopamine, epinephrine, and norepinephrine (Alexander et al., 2011; Mier, Kirsch, & 
Meyer-Lindenberg, 2010). As a result, variations in its sequence are also potentially relevant to 
mood dysregulation and drug use problems. Two COMT SNPs, rs165722 and rs4646312, have 
been associated with increased novelty seeking behavior (Roe et al., 2009) and are therefore 
included in this analysis. Excessive novelty seeking behavior is a risk factor for drug use, 
especially if comorbid with negative affect (Kreek, Nielsen, Butelman, & LaForge, 2005).  

There are approximately 10 million SNPs in the human genome. Greater understanding of 
differences in genetic makeup could elucidate greater understanding of how we function in our 
daily lives. The latter is quantified through self-report measures in this study, and I aspire to 
identify how they are related.  If we can identify genetic correlates for behavior like negative 
affect and cannabis use, we will be better equipped to treat both. For example, a medication that 
targets specific receptors or blocks transporters could be most effective in individuals with 
neurochemical imbalances in these specific pathways We would also have preemptive 
knowledge regarding potential for drug use disorder development, which might alter decisions 
people made about life choices like drug use initiation.  

For Analysis: Each individual has two sets of chromosomes; one from each parent. This means 
they have three possibilities for their genotype in a specific SNP, specifically in terms of the 
allele that has been associated with drug use disorders or negative affect according to previous 
literature (i.e. the “risk” allele). They can be homozygous for this allele, heterozygous (one copy 
of the gene has the risk allele and the other doesn’t) or homozygous for a major/non-risk allele. 
Although the number of risk alleles can be counted, the allele is still a categorical variable in 
nature: function of the allele is not linearly related to genotype. For example, genotype for the 
Val158Met polymorphism in the COMT gene has demonstrated numerous times an inverted U 
pattern in function (Cools & D'Esposito, 2011; Tan, Callicott, & Weinberger, 2007). This 
importantly dictates the manner in which we must examine SNPs from a statistical perspective: 
as categorical rather than quantitative variables, since the presence of 0, 1, or 2 minor alleles 
does not indicate a linear change in function.  

Table 1: SNPs of interest in this analysis.  

SNP Gene Function Minor 
Allele 

% Minor Allele in 
Sample (Aa or 
aa) 

% 
Homozygous 
Minor Allele in 
Sample (aa) 

rs104935
3    

CNR1 Resistance to depression 
treatment 

A 46 2 

rs645467
4  

CNR1 Substance use disorders G 57 14 

rs806368 CNR1 Substance use disorders C 39 9 
rs104271
3 

ADRB
2 

Receptor internalization A 60 13 



5 
 

rs206671
3 

SLC4
A6 

Fragment length 
polymorphism 

T 65 14 

rs165722  COMT Novelty seeking behavior T 67 22 
rs464631
2  

COMT Novelty seeking behavior C 60 14 

rs6311 SLC4
A6 

Reduced transcription 
efficiency 

T 58 14 

 

Behavior measures are likewise coded nominally because the presence or absence of one 
person’s anxiety is different from the presence or absence of another person’s.  

Partial Least Squares Correspondence Analysis 
Partial Least Squares Correspondence Analysis (PLSCA) is a new statistical method 

especially suited for identifying commonalities between genetics and behavior. It is a 
combination of two methods and draws upon specific aspects of each of them:  

Partial Least Squares Analysis (PLS) allows for the analysis of two tables of data that 
describe the same observations. In this case, each participant is an “observation”, with genetics 
as one table to be analyzed, and behavior data (depression and anxiety) as another. This poses 
a problem, however, because both of these tables of data are nominal, and PLS is suited for 
quantitative data.  

The second part of PLSCA, Correspondence Analysis (CA), is a form of Partial Least 
Squares specifically for nominal data.  CA allows for analysis of one table of data, typically with 
rows denoting observations, and columns denoting variables for which each observation has a 
value (D. Beaton, Filbey, F., Abdi, H., 2013a).  

PLSCA allows for the analysis of two tables of nominally-coded variables, each set in its 
own table, that describe the same sample by combining the merits of Partial Least Squares 
Analysis (PLS) and Correspondence Analysis (CA).  The two tables of data to be analyzed are 
denoted as matrices X and Y. Table X consists of I by J rows, and table Y consists of I by K 
rows, where I represents the observations they have in common. When multiplied together 
(XTY), this makes the matrix R, of dimensions JxK:  

JRK= IXJ
T

IYK 

Because these data is nominal, analysis must occur in an accommodating framework. 
Thus, Χ2 is used, allowing data to be characterized according to its marginal probabilities (D. 
Beaton, Dunlop, J., Abdi, H., Alzheimer's Disease Neuroimaging Initiative, 2013). 

The goal of PLSCA is to identify commonalities in variance between two tables of 
nominal data. To do this, the original data tables (X and Y) are multiplied by the left and right 
singular vectors, U and V (respectively), which are themselves obtained from the singular value 
decomposition of X and Y. The products of XU and YV are latent variables (LX and LY). These 
latent variables are orthogonal, and the manner in which they are scaled allows them to be 
plotted together, on the same graph (called a bipolot), thereby allowing for visualization of their 
relationship (D. Beaton, Filbey, F., Abdi, H., 2013b).  
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By examining these variations in conjunction with indicators of negative affect, I aim to 
identify if heavy cannabis users with negative affect are more likely to have risk alleles for the 
above mentioned genes, thereby indicating that there is genetic predisposition for their condition 
(Naqvi & Bechara, 2010). PLSCA will allow these tables of data to be analyzed in the same 
space, so differences and similarities in variables can be visualized. 

Methods 
Participants: Participants from this study took place in a larger study investigating neural 
mechanisms related to cannabis abuse and dependence (details in (Filbey, Schacht, Myers, 
Chavez, & Hutchison, 2009).  As part of the study, cannabis users (CU) completed 
questionnaires pertaining to demographics, cannabis use, negative affect, and stress. They also 
performed neuropsychological assessments, underwent an MRI scan, and provided a saliva 
sample for genotyping. Healthy controls (HC) completed the same measures, except those 
regarding cannabis use. All participants were recruited from the Albuquerque, New Mexico 
metro area via media advertisements to participate in studies that focused on determining the 
neurobiological antecedents of substance use disorders. Overall, 157 CU and 37 HC were 
recruited. The Institutional Review Board of the Mind Research Network approved all of the 
recruitment and experimental procedures.  

Inclusion/Exclusion Criteria: All participants were required to give written, informed consent to 
participate in the study. They were also required to be right handed, between the ages of 18 and 
55, with no MRI contraindications (e.g. pregnancy, metallic implants in the body, claustrophobia, 
etc.). All participants were required to use no substances besides cannabis (CU only), nicotine, 
and alcohol, as verified via phone screen before the appointment. At the appointment, this was 
further verified by urine toxicology analysis, and thorough interrogation regarding all drug use for 
the past 90 days. Only CU positive for THC and HC negative for THC were included in this 
study. All participants were required to have no history of psychosis according to the Psychotic 
Symptoms module of the Structured Clinical Interview for DSM-IV-TR, Research Version 
(SCID-TR) (First, 2002).  

Outcome measures:  To determine the relationship between negative affect, emotion regulation, 
stress, and cannabis/alcohol use, I analyzed responses to the Beck Anxiety Inventory (BAI) 
(Creamer, Foran, & Bell, 1995), Beck Depression Inventory (BDI)(Steer, Beck, Riskind, & 
Brown, 1986).  
 

Experimental Design/Analysis: Data was preliminarily analyzed for the distribution of each 
variable, as this would affect measure outcomes. All variables were binned to make nominal for 
this analysis, and to eliminate the contribution to the variance caused by outliers.   

Multiple Correspondence Analysis (MCA) was used to associate quantity and severity of 
negative affect (BAI, BDI). First, responses to each of the 21 questions in each inventory were 
re-coded to simply the presence of or absence of a positive report for that symptom. The data 
underwent MCA to identify patterns of relationships between measures of depression and 
anxiety. The scarce responses to some symptoms (ex: feelings of choking) resulted in an 
exaggerated first component, so I performed the MCA with a Hellinger distance rather than 
chi-square distance correction to account for this (Figure 1) (Abdi, 2007).  

Negative Affect is represented as scores on the Beck Depression Inventory (BDI) and 
Beck Anxiety Inventory (BDI). Problems associated with cannabis use are represented 
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according to the Marijuana Problem Scale (MPS). Questions were answered by 0-3, with 0 
indicating “this symptom does not affect my life” to 3 indicating “this symptom affects my life so 
much I could not stand it”. To eliminate the effect of imbalanced presence of responses, these 
were recoded to simply reflect the presence or absence of negative affect; either as a “yes” or a 
“no”.  

Partial Least Squares Correspondence Analysis was used to identify relationships 
between negative affect and SNPs associated with substance dependence and emotional 
dysregulation in the literature. Inference tests (a permutation test and a bootstrap ratio test) 
were performed to identify how likely these results were to occur by chance.  
 

Results 
MCA: There were 49 components, three of which were significant. Component 1 explained 
26.33% of the variance, with an associated eigenvalue of 1.13E-3, p=0.01.  Component 1 
clearly differentiates the presence of negative affect (on the right side of the graph) from the 
absence of negative affect, on the left. Component 2 explained 7.45% of the variance, with an 
associated eigenvalue of 3.20E-4, p=0.01. This component differentiates the presence of 
anxiety from the presence of depression. These results support the use of these inventories as 
adequate indicators of depression and anxiety, so I proceeded to analyze these measures in 
conjunction with SNPs of interest (Figure 1). 
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Figure 1: Multiple Correspondence Analysis of negative affect, components 1 and 2.  

 

Figure 2: MCA of Participants along components 1 and 2.  Distribution of MUs (green) 
and HCs (blue) shows a relatively homogenous distribution along components 1 and 2,with 
proportionally more MUs (43%) than HCs (22%) on the side associated with the presence of 
negative affect.  Although there are proportionally more MUs (46%) than HCs (39%) on the 
bottom of component 2 than on the top, the distribution of each group is more equal than along 
component 1.  

Component 3 explained 5.89% of the variance, with an associated eigenvalue of 
2.53E-4, p=0.01. This component differentiates somatic (ex: “indigestion”, feeling hot”, etc.) from 
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psychological afflictions (ex: “self dislike”, “self criticalness”, “fear of worst happening”, etc.).  
(Figure 3).   

 

Figure 3: MCA of Negative Affect along components 2 and 3.  
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Figure 4: MCA of Participants along components 2 and 3.  

PLSCA: After an initial MCA demonstrated the relationship between the absence and presence 
of depression and anxiety, a PLSCA was performed to show how these fit with participants’ 
genotypes. There were 16 different components, none of which were significant (pomnibus=0.529).  
Component 1 explained 25.31% of the variance, with an associated eigenvalue of 4.82E-3, 
p=0.718. Component 2 explained 16.24% of the variance, with an associated eigenvalue of 
3.10E-3, p=0.198.  
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Figure 5: Latent Variables of Table X (Depression and Anxiety) plotted against latent variables 

of Table Y (SNP alleles).   
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Figure 6: Latent variables of Table X (Depression and Anxiety) plotted against latent variables 
of Table Y (SNP alleles).  The greatest amount of variability occurs along the Y axis.  
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Figure 7: PLSCA analysis of negative affect along components 1 and 2 demonstrates that the 
presence of anxiety symptoms 1, 11, 19, and 20 account for the greatest difference, as depicted 
in its distance from the barycenter.  
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Figure 8: SNP status as homozygous for risk allele, heterozygous, or homozygous for dominant 
allele.  

Because these results were inconclusive, a post-hoc Chi square test for distribution of means 
was performed, with a p value simulated by Monte Carlo procedures (Χ2=639.88, p=1).  
Bootstrap confidence intervals were calculated to determine bootstrap ratios that would identify 
which relationships between scores and variables were unlikely to happen by chance.  

Permutation tests were used to identify the likelihood of obtaining these results by chance. 
Because none of the results were less likely than 1/1000 permutations to happen, all 
components are considered insignificant.  
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Discussion 
 In this study, I examined eight SNPs that are identified in the literature as being 
associated with symptoms of negative affect and/or drug use disorders. This study indicates that 
variations in these SNPs is not implicated in negative affect presented in this sample of heavy 
cannabis users.  

 The heavy cannabis users in this study who have genetic predispositions to negative 
affect may have been ruled out during data preprocessing, because they demonstrated no 
symptoms of negative affect. This would support the self-medication hypothesis of drug use, 
and these individuals could be considered to be successfully self-medicating, since they 
demonstrate no acute symptoms of depression or anxiety.  

 Negative Affect and Stress. Early life stress and perceived stress have been shown to 
prompt hyperactivity in the amygdala (Grant, Cannistraci, Hollon, Gore, & Shelton, 2011), 
downregulation of serotonergic modulation of the HPA axis (C. Heim & Binder, 2012) and 
cognitively, excessive rumination (Nolen-Hoeksema, 2000). These result in negative affect, 
which prompts cannabis use as a means to self-medicate. 

However, other studies have found increases in peripheral corticotrophin-releasing 
hormone (CRH) and glucocorticoid resistance in victims of early life stress (C. Heim, Mletzko, 
Purselle, Musselman, & Nemeroff, 2008; C. Heim, Newport, D.J., Mletzko, T., Miller, A.H., 
Nemeroff, C.B., 2008). This indicates the up-regulation of the limbic hypothalamic pituitary 
adrenal (LHPA) axis, in an effort to cope with increased environmental stress.   

Faulty a priori hypotheses regarding the function of rs2066713 may be responsible for its 
lack of a significant result. Further research on the definition of a “fragment length 
polymorphism” demonstrated that it is not in fact a polymorphism that results in a shorter 
protein, but rather a polymorphism that creates an identifiable fragment when cleaved with 
restriction enzymes. Thus, this polymorphism is not in fact related to any of these 
psychopathologies in the literature beyond its function in laboratory identification procedures.  

Conclusions 
Further research is necessary. A larger sample size is required to accurately capture the 

genetic variation present in the population, before conclusions can be made about the 
distribution of minor alleles in conjunction with negative affect. More SNPs should also be 
examined, as none of these mechanisms are likely to depend on one locus of genetic variation. 

A more precise measure of negative affect is also necessary; one that asks about 
lifetime symptoms rather than the symptoms in the past two weeks. In addiction, symptoms 
should be considered only when the individual is not under the influence of or withdrawing from 
cannabis – which would be difficult in a population of heavy users who are possibly dependent.  

 Future analyses will incorporate more dimensions that may capture symptoms of 
negative affect, for example, the NEO Five Factor Inventory, the State Trait Anxiety Inventory, 
the Marijuana Motives Measure, and other measures of factors that could indicate how negative 
affect and drug use are related. In summary, more information is needed to make any 
conclusions. 
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Appendix 1: Negative Affect Measure Key 

Table 1: Variable key for items from the Beck Depression Inventory and Beck Anxiety Inventory 

Beck Anxiety Inventory Beck Depression Inventory 

bai1 numbness or tingling bdi1 sadness 

bai2 feeling hot bdi2 pessimism 

bai3 wobbliness in legs bdi3 past failure 

bai4 unable to relax bdi4 loss of pleasure 

bai5 fear of worst happening bdi5 guilty feelings 

bai6 dizzy or lightheaded bdi6 punishment of feelings 

bai7 heart pounding/racing bdi7 self dislike 

bai8 unsteady bdi8 self-criticalness 

bai9 terrified or afraid bdi9 suicidal thoughts/wishes 

bai1
0 nervous 

bdi1
0 crying 

bai1
1 feeling of choking 

bdi1
1 restlessness 

bai1
2 hand trembling 

bdi1
2 loss of interest 

bai1
3 shaky/unsteady 

bdi1
3 indecisiveness 

bai1
4 fear of losing control 

bdi1
4 worthlessness 

bai1
5 difficulty in breathing 

bdi1
5 loss of energy 

bai1
6 fear of dying 

bdi1
6 changes in sleeping pattern 
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bai1
7 scared 

bdi1
7 irritability 

bai1
8 indigestion 

bdi1
8 changes in appetite 

bai1
9 faint/lightheaded 

bdi1
9 concentration difficulty 

bai2
0 face flushed 

bdi2
0 tiredness or fatigue 

bai2
1 hot/cold sweats 

bdi2
1 loss of interest in sex 

 

Appendix 2: R Code 

#Reading and Preparing the Data 

behav.data <- read.csv("MRN.PLSCA.NegAffect.csv", header = TRUE, sep = 

",", quote = "\"", dec = ".", fill = TRUE, comment.char = "")  

#BAI 
 #BAI1 
  hist(behav.data[,37], breaks = 50, col="purple") 
  BAI1.cuts <- cut(behav.data[,37],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI1.cuts) 
   
 #BAI2 
  hist(behav.data[,38], breaks = 50, col="purple") 
  BAI2.cuts <- cut(behav.data[,38],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI2.cuts) 
    
 #BAI3 
  hist(behav.data[,39], breaks = 50, col="purple") 
  BAI3.cuts <- cut(behav.data[,39],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
   summary(BAI3.cuts) 
    
 #BAI4 
  hist(behav.data[,40], breaks = 50, col="purple") 
 #BAI4.cuts <- cut(behav.data[,40],breaks=c(-1,0,3), 
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  labels=c('N','Y')) 
   summary(BAI4.cuts) 
     
 #BAI5 
  hist(behav.data[,41], breaks = 50, col="purple") 
  BAI5.cuts <- cut(behav.data[,41],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI5.cuts) 
     
 #BAI6 
  hist(behav.data[,42], breaks = 50, col="purple") 
  BAI6.cuts <- cut(behav.data[,42],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI6.cuts) 
     
 #BAI7 
  hist(behav.data[,43], breaks = 50, col="purple") 
  BAI7.cuts <- cut(behav.data[,43],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI7.cuts) 
 
 #BAI8 
  hist(behav.data[,44], breaks = 50, col="purple") 
  BAI8.cuts <- cut(behav.data[,44],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI8.cuts) 
 
 #BAI9 
  hist(behav.data[,45], breaks = 50, col="purple") 
  BAI9.cuts <- cut(behav.data[,45],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI9.cuts) 
 
 #BAI10 
  hist(behav.data[,46], breaks = 50, col="purple") 
  #BAI10.cuts <- cut(behav.data[,46],breaks=c(-1,0,1,3), 
  #labels=c('No','Some','Yes')) 
  BAI10.cuts <- cut(behav.data[,46],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI10.cuts) 
 
 #BAI11 
  hist(behav.data[,47], breaks = 50, col="purple") 
  BAI11.cuts <- cut(behav.data[,47],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI11.cuts) 
 
 #BAI12 
  hist(behav.data[,48], breaks = 50, col="purple") 
  BAI12.cuts <- cut(behav.data[,48],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
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   summary(BAI12.cuts) 
 
 #BAI13 
  hist(behav.data[,49], breaks = 50, col="purple") 
  BAI13.cuts <- cut(behav.data[,49],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI13.cuts) 
    
 #BAI14 
  hist(behav.data[,50], breaks = 50, col="purple") 
  BAI14.cuts <- cut(behav.data[,50],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI14.cuts) 
 
 #BAI15 
  hist(behav.data[,51], breaks = 50, col="purple") 
  BAI15.cuts <- cut(behav.data[,51],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI15.cuts) 
 
 #BAI16 
  hist(behav.data[,52], breaks = 50, col="purple") 
  BAI16.cuts <- cut(behav.data[,52],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI16.cuts) 
 
 #BAI17 
  hist(behav.data[,53], breaks = 50, col="purple") 
  BAI17.cuts <- cut(behav.data[,53],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI17.cuts) 
 
 #BAI18 
 #higher scores more frequent here 
  hist(behav.data[,54], breaks = 50, col="purple") 
  #BAI18.cuts <- cut(behav.data[,54],breaks=c(-1,0,1,3), 
  #labels=c('No','Some','Yes')) 
  BAI18.cuts <- cut(behav.data[,54],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI18.cuts) 
 
 #BAI19 
  hist(behav.data[,55], breaks = 50, col="purple") 
  BAI19.cuts <- cut(behav.data[,55],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI19.cuts) 
 
 #BAI20 
  hist(behav.data[,56], breaks = 50, col="purple") 
  BAI20.cuts <- cut(behav.data[,56],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
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   summary(BAI20.cuts) 
 
 #BAI21 
  hist(behav.data[,57], breaks = 50, col="purple") 
  BAI21.cuts <- cut(behav.data[,57],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BAI21.cuts) 
    
#BDI 
 #BDI1 
  hist(behav.data[,58], breaks = 50, col="purple") 
  BDI1.cuts <- cut(behav.data[,58],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI1.cuts) 
 #BDI2 
  hist(behav.data[,59], breaks = 50, col="purple") 
  BDI2.cuts <- cut(behav.data[,59],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
   summary(BDI2.cuts) 
 
 #BDI3 
  hist(behav.data[,60], breaks = 50, col="purple") 
  BDI3.cuts <- cut(behav.data[,60],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI3.cuts) 
 
 #BDI4 
  hist(behav.data[,61], breaks = 50, col="purple") 
  BDI4.cuts <- cut(behav.data[,61],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
   summary(BDI4.cuts) 
 
 #BDI5 
  hist(behav.data[,62], breaks = 50, col="purple") 
  BDI5.cuts <- cut(behav.data[,62],breaks=c(-1,0,1), 
  labels=c('N','Y')) 
   summary(BDI5.cuts) 
    
 #BDI6 
  hist(behav.data[,63], breaks = 50, col="purple") 
  BDI6.cuts <- cut(behav.data[,63],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI6.cuts) 
 
 #BDI7 
  hist(behav.data[,64], breaks = 50, col="purple") 
  BDI7.cuts <- cut(behav.data[,64],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI7.cuts)   
   
 #BDI8 
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  hist(behav.data[,65], breaks = 50, col="purple") 
  #BDI8.cuts <- cut(behav.data[,65],breaks=c(-1,0,3), 
  #labels=c('No','Some','Yes')) 
  BDI8.cuts <- cut(behav.data[,65],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI8.cuts) 
 
 #BDI9 
  hist(behav.data[,66], breaks = 50, col="purple") 
  BDI9.cuts <- cut(behav.data[,66],breaks=c(-1,0,1), 
  labels=c('N','Y')) 
   summary(BDI9.cuts) 
    
 #BDI10 
  hist(behav.data[,67], breaks = 50, col="purple") 
  BDI10.cuts <- cut(behav.data[,67],breaks=c(-1,0,4), 
  labels=c('N','Y')) 
   summary(BDI10.cuts) 
 
 #BDI11 
  hist(behav.data[,68], breaks = 50, col="purple") 
  BDI11.cuts <- cut(behav.data[,68],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI11.cuts) 
 
 #BDI12 
  hist(behav.data[,69], breaks = 50, col="purple") 
  BDI12.cuts <- cut(behav.data[,69],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI12.cuts) 
 
 #BDI13 
  hist(behav.data[,70], breaks = 50, col="purple")  
  BDI13.cuts <- cut(behav.data[,70],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI13.cuts) 
 
 #BDI14 
  hist(behav.data[,71], breaks = 50, col="purple") 
  BDI14.cuts <- cut(behav.data[,71],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
   summary(BDI14.cuts) 
 
 #BDI15 
  hist(behav.data[,72], breaks = 50, col="purple") 
  BDI15.cuts <- cut(behav.data[,72],breaks=c(-1,0,1), 
  labels=c('N','Y')) 
   summary(BDI15.cuts) 
 
 #BDI16 
  hist(behav.data[,73], breaks = 50, col="purple") 
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  BDI16.cuts <- cut(behav.data[,73],breaks=c(-1,0,3.5), 
  labels=c('N','Y')) 
   summary(BDI16.cuts) 
 
 #BDI17 
  hist(behav.data[,74], breaks = 50, col="purple") 
  BDI17.cuts <- cut(behav.data[,74],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI17.cuts) 
 
 #BDI18 
  hist(behav.data[,75], breaks = 50, col="purple") 
  BDI18.cuts <- cut(behav.data[,75],breaks=c(-1,0,3.5), 
  labels=c('N','Y')) 
   summary(BDI18.cuts) 
 
 #BDI19 
  hist(behav.data[,76], breaks = 50, col="purple") 
  BDI19.cuts <- cut(behav.data[,76],breaks=c(-1,0,3), 
  labels=c('N','Y')) 
   summary(BDI19.cuts) 
 
 #BDI20 
  hist(behav.data[,77], breaks = 50, col="purple") 
  BDI20.cuts <- cut(behav.data[,77],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
   summary(BDI20.cuts) 
 
 #BDI21 
  hist(behav.data[,78], breaks = 50, col="purple") 
  BDI21.cuts <- cut(behav.data[,78],breaks=c(-1,0,2), 
  labels=c('N','Y')) 
   summary(BDI21.cuts) 
 
 
 
 
behav.data.nom <- cbind( 
#as.character(BAItot.cuts), as.character(BDItot.cuts), 
as.character(BAI1.cuts),as.character(BAI2.cuts),as.character(BAI3.cuts), 
as.character(BAI4.cuts),as.character(BAI5.cuts),as.character(BAI6.cuts), 
as.character(BAI7.cuts),as.character(BAI8.cuts),as.character(BAI9.cuts), 
as.character(BAI10.cuts),as.character(BAI11.cuts),as.character(BAI12.cuts), 
as.character(BAI13.cuts),as.character(BAI14.cuts),as.character(BAI15.cuts), 
as.character(BAI16.cuts),as.character(BAI17.cuts),as.character(BAI18.cuts), 
as.character(BAI19.cuts),as.character(BAI20.cuts),as.character(BAI21.cuts), 
 
as.character(BDI1.cuts),as.character(BDI2.cuts),as.character(BDI3.cuts), 
as.character(BDI4.cuts),as.character(BDI5.cuts),as.character(BDI6.cuts), 
as.character(BDI7.cuts),as.character(BDI8.cuts),as.character(BDI9.cuts), 
as.character(BDI10.cuts),as.character(BDI11.cuts),as.character(BDI12.cuts), 
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as.character(BDI13.cuts),as.character(BDI14.cuts),as.character(BDI15.cuts), 
as.character(BDI16.cuts),as.character(BDI17.cuts),as.character(BDI18.cuts), 
as.character(BDI19.cuts),as.character(BDI20.cuts),as.character(BDI21.cuts)) 
 
colnames(behav.data.nom) <- c(#'BAItot','BDItot', 
'A1','A2','A3','A4','A5','A6','A7','A8','A9','A10','A11','A12','A13','A14','A15','A16','A17','A18','A19','A
20','A21','D1','D2','D3','D4','D5','D6','D7','D8','D9','D10','D11','D12','D13','D14','D15','D16','D17','
D18','D19','D20','D21') 

 
rownames(behav.data.nom) <- behav.data[,1] 
 

#Analysis: MCA 

MJ.MCA.h <- epMCA(behav.data.nom, DESIGN = NULL, make_design_nominal = TRUE, 
masses = NULL, weights = NULL,hellinger = TRUE, symmetric = FALSE, graphs = TRUE, k = 
0) 

MJ.MCA.h$Plotting.Data$fj.col[1:42,1] <- "orange" 
MJ.MCA.h$Plotting.Data$fj.col[43:84,1] <- "dodgerblue3" 
 
 
MJ.MCA.h$Plotting.Data$fi.col[1:43,1] <- "mediumpurple2" 
MJ.MCA.h$Plotting.Data$fi.col[44:194,1] <- "green" 

 

#Analysis: PLSCA 

source("MRN.MCA.NegAffectOnly.R") 
 
 
setwd("/Users/arielketcherside/Desktop/RMIII_Project/data/FINAL.ANALYSIS") 
SNPs.data <- read.csv("SNPs.for.analysis2.csv", header = TRUE, sep = ",", quote = "\"", dec = 
".", fill = TRUE, comment.char = "")  

 
 
SNPs.small <- SNPs.data[,-1:-2] 
 
rownames(SNPs.small) <- SNPs.data[,1] 
colnames(SNPs.small) <- c("rs1049353_A", "rs6454674_G", "rs806368_C",  "rs1042713_A", 
"rs2066713_T", "rs165722_T", "rs4646312_C", "rs6311_T") 

 
snp.data.to.replace <- SNPs.small 
snp.data.to.replace <- replace(snp.data.to.replace,snp.data.to.replace==2,'aa') ##turns 2s into 
aa (minor minor) 
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snp.data.to.replace <- replace(snp.data.to.replace,snp.data.to.replace=='0','AA')  ##turns 0s into 
AA (major major) 

snp.data.to.replace <- replace(snp.data.to.replace,snp.data.to.replace=='1','Aa')  ##turns 1s into 
aa (major minor) 

 
SNPs <- snp.data.to.replace 
 
Depression_Anxiety <- behav.data.nom 
 
SNPs.nom <- makeNominalData(SNPs) 
DepAnx.nom <- makeNominalData(Depression_Anxiety) 
 
 
MJ.PLSCA <- tepPLSCA(Depression_Anxiety, SNPs, make_data1_nominal = TRUE, 
make_data2_nominal = TRUE,  

DESIGN = NULL, make_design_nominal = TRUE,  
weights1=NULL, weights2 = NULL,  
symmetric = TRUE, graphs = TRUE, k = 0) 
 
 
#Neg.Affect 
MJ.PLSCA$Plotting.Data$fi.col[1:42,] <- "goldenrod1" 
MJ.PLSCA$Plotting.Data$fii.col[1:18,] <- "dodgerblue3" 
MJ.PLSCA$Plotting.Data$fii.col[19:100,] <- "forestgreen" 
 
 
tepGraphs(MJ.PLSCA, DESIGN = NULL, x_axis = 1, y_axis = 2,  
 fi.col = MJ.PLSCA$Plotting.Data$fi.col, fi.pch = NULL,  
 fii.col = MJ.PLSCA$Plotting.Data$fii.col, fii.pch = NULL,  
 fj.col = MJ.PLSCA$Plotting.Data$fj.col, fj.pch = NULL,  
 col.offset = NULL, constraints = NULL, lv.constraints = NULL, 
 xlab = NULL, ylab = NULL, main = NULL,  
 lvPlots = TRUE, lvAgainst = TRUE, 
 contributionPlots = FALSE, correlationPlotter = FALSE,  
 showHulls = 1, biplots = FALSE, graphs = TRUE) 
 
 

#Inference 
 
X <- SNPs.nom 
Y <- DepAnx.nom 
Z <- t(X)%*%Y 
 
chisq.test(Z, simulate.p.value = TRUE, B=1000) 
 

source('plsc.R') 

source('plsc.perm.boot.R') 
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 source('norm.mat.R') 

 X <- makeNominalData(SNPs) 

 Y <- makeNominalData(Behav.m) 

perm.res <- plsc.perm.boot(X,Y) 

plsc.res<- plsc(X,Y) 
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